UNIWERSYTET MORSKI Gdynia d Katedra Podstaw Techniki Laboratorium Automatyki – napędy elektryczne

Gdynia dnia 2024-03-01

Instrukcja ćwiczenia

Ćwiczenie nr	56
Temat:	Badanie charakterystyk napędów elektrycznych
Stanowisko laboratoryjne	Napędy elektryczne - silnik trójfazowy
Opracował:	A. Mielewczyk

UNIWERSYTET MORSKI Katedra Podstaw Techniki Laboratorium Automatyki

Instrukcja ćwiczenia nr 56

Temat: Badanie charakterystyki napędów elektrycznych Silnik trójfazowy AC

1. Cel ćwiczenia:

Celem ćwiczenia jest wykreślenie charakterystyk obciążeniowych napędów elektrycznych za pomocą programu **DriveLab** dla silnika trójfazowego prądu zmiennego.

2. Zakres wymaganych wiadomości:

- sygnały cyfrowe i analogowe,
- budowa silnika trójfazowego prądu zmiennego,
- własności i charakterystyki silnika elektrycznego,
- programowanie ze stanowiska laboratoryjnego,
- programowanie w DriveLab,

3. Przebieg ćwiczenia:

Skonfigurować układ sterowania, wprowadzić parametry do programu DriveLab z funkcją regulacji prędkości i momentu obrotowego, wykreślić przebieg regulacji, przedstawić wnioski.

4. Stanowisko laboratoryjne:

Stanowisko badania napędów elektrycznych, silnik prądu zmiennego trójfazowy, program DriveLab.

5. Sprawozdanie z ćwiczenia:

Część wstępna, opis elementów, parametry konfigurowane poprzez DriveLab, sterowanie ręczne i sekwencyjne, przebieg regulacji prędkości i momentu, charakterystyki dynamiczne.

Spis treści

Instrukcja ćwiczenia nr 56	.2
Silnik trójfazowy AC	.2
1. Wprowadzenie	.4
2. Opis stanowiska badawczego	.7
3. Charakterystyka silnika trójfazowego1	1
3.1 Zasada działania silnika trójfazowego1	14
3.2 Zmiana kierunku pracy silnika trójfazowego1	15
4. Zakładanie projektu w programie DriveLab1	16
5. Przebieg ćwiczenia	30
Spis ilustracji	31

Stanowisko badania napędów elektrycznych <u>konfiguracja i sterowanie</u>

1. Wprowadzenie

Rys. 1.1 Elementy stanowiska dydaktycznego – układ napędowy

Z podanych komponentów należy zbudować układ z silnikiem napędowym, Rys. 1.1 W tym celu podłączamy zasilanie do układu oraz łączymy układ sterowania z komputerem.

Tabela 1.1 Oznakowanie kolorami połączeń zasilania i sygnałów na elementach

Kolor	Oznaczający	Kolor	Oznaczający
0	Napięcie większe niż SELV np. napięcie zasilania od 90 do 400 V AC na przewód (szary)	0	24 V prądu stałego (czerwony)
0	Przewód neutralny (szaro-niebieski)		0 V prądu stałego (niebieski)
0	Przewód PE (zielony żółty)		
	Zacisk uziemienia ochronnego jako styk PE+		

Ogólne	Parametry
Wymiary	510 x 380 x 270 mm
Waga	21 kg
Otoczenia warunki	5 do 40° C, do 65% wilgotności względnej, bez kondensacji
Ochrona	IP20
Hałas poziom	70 dB
Ustawienie zakres prędkości _	-4000 obr/min+4000 obr/min
Ustawienie zakres momentu obrotowego	04 Nm
Moc hamowania	Maks. 400 W
Cykl pracy	Maks. 30%

Tabela 1.2 Dane stanowiska testowego silników elektrycznych

Tabela 1.3 Dane elektryczne stanowiska testowego silników elektrycznych

Parametry	Specyfikacja elektryczna
Napięcie zasilania	110 do 230 V AC ± 10%
Prąd	Maks. 6 A
Panel złączy dla obiektu testowego	L1/L2/L3 400 V AC / 5 A
Napięcie pomiarowe	L1/L3, L1/N, DC+/DC- 400 V AC lub 250 V DC
Prąd pomiarowy	L1/DC+ input L1/DC+ output 5 A AC / 8 A DC
Błąd prądu wyjście	30 V / 1 A
Wejście termoprzełącznika	24 V DC / 0,1 A
Port USB	USB 2.0
Obwód sterujący	Czarne gniazda , 24 V prądu stałego
Obwód podstawowy	Szare gniazda, 400 V AC lub 250 V DC

Schemat połączenia na stanowisku testowym przedstawia Rys. 1.2 i Rys. 1.3.

Rys. 1.2 Podłączenie silnika prądu przemiennego trójfazowy, podłączenie termoprzełącznika

Rys. 1.3 Schemat podłączenia silnika trójfazowego do sieci z układem sterowania

2. Opis stanowiska badawczego

Główne elementy stanowiska badawczego to:

- Stanowisko testowe,
- Servo silnik hamulcowy,
- Silnik elektryczny trójfazowy do testów.

Obudowa stanowiska badawczego służy jako stojak montażowy, Rys. 2.1. Do stołu testowego można podłączyć różne obiekty testowe – silniki elektryczne. Szybkomocujące uchwyty ułatwiają zmianę jednego silnika testowego na drugi.

Rys. 2.1 Stanowisko testowe

- 1 Port USB
- 2 Serwo silnik hamulcowy
- 3 Osłona
- 4 Połączenie elastyczne wałów
- 5 Szybki zacisk
- 6 Przewód uziemienia ochronnego
- 7 Panel złączy dla obiektu testowego
- 8 Połączenia wyjść przełączających (bezpotencjałowe) i wejście termoprzełącznika
- 9 Pokrętło obrotowe
- 10 Wyświetlacz
- 11 Wyłącznik główny stanowiska testowego

Silnik servo hamulca pełni funkcję hamulca lub jednostki napędowej, w zależności od sposobu obsługi. Prąd jest odpowiednio regulowany przez sterownik. Zintegrowany kontroler reguluje moc zasilania silnika serwo hamulca. Sterowanie odbywa się za pomocą pokrętła lub zewnętrznie poprzez port USB w komputerze PC za pomocą programowania DriveLab. Port USB to interfejs umożliwiający połączenie stanowiska z komputerem PC i oprogramowaniem DriveLab.

Panel złączy wyposażony jest w gniazda zaciskowe do zasilania obiektu testowanego (L1, L2, L3), wejście temperaturowe i wyjście błędu. Pokrętło służy zarówno jako regulator, jak i przełącznik do obsługi stanowiska badawczego. Wyświetlacz wskazuje wartości mierzone, wartości charakterystyczne i tryb działania.

Montaż obiektu testowego:

- 1. Wyłącz wyłącznik główny i wyłącznik zasilania.
- 2. Zwolnij obie dźwignie szybkiego zacisku (A) na stole badawczym
- 3. Ściśnij i przytrzymaj dwie dźwignie zaciskowe (B) na badanym obiekcie.
- 4. Wprowadź płytkę obiektu testowego w szczeliny w obudowie stanowiska badawczego.

Rys. 2.2 Montaż silnika elektrycznego na stanowisku testowym

- 5. Popchnij badany obiekt w stronę silnika servo hamulca, aż zostanie uruchomiony wyłącznik krańcowy (C).
- 6. Bezpiecznie przymocuj badany obiekt do obudowy stanowiska testowego. W tym celu wystarczy zwolnić dwie dźwignie zaciskowe (B), które następnie automatycznie zabezpieczają badany obiekt. Następnie obróć zacisk dźwignię (A).
- 7. Podłączanie obiektu testowego:
 - Wyłącz wyłącznik główny i wyłącznik zasilania.
 - Podłączyć przewody zgodnie ze schematem połączeń.
 - Podłączyć zaciski termoprzełącznika do silnika.
 - Przed wykonaniem pomiaru ponownie włącz zasilanie.

Stanowiskiem testowym można sterować z komputera PC poprzez port USB. Wymagany jest do tego system operacyjny Windows i oprogramowanie DriveLab. Dzięki temu znacznie zwiększa się zakres funkcji stanowiska badawczego. Można na przykład automatycznie rejestrować krzywe charakterystyczne, konfigurować obciążenia statyczne i symulować różne modele obciążeń.

Sterowanie stanowiskiem badawczym odbywa się za pomocą pokrętła oraz informacji zwrotnej otrzymywanej na wyświetlaczu.

Tryb pracy wybiera się i konfiguruje za pomocą pokrętła na stanowisku badawczym. Dostępne są trzy różne tryby pracy:

• Sterowanie momentem obrotowym - celem tego trybu pracy jest rejestracja charakterystyki prędkości obrotowej silnika w obr./min, w tym celu obiekt testowy poddawany jest stale zadanej wartości momentu obrotowego w całym zakresie prędkości.

• Sterowanie prędkością obrotową - celem tego trybu pracy jest rejestracja charakterystyki momentu obrotowego przy jednej lub kilku wstępnie wybranych prędkościach silnika,

• Tryb komputera - po włączeniu tego trybu stanowisko testowe jest obsługiwane z komputera PC.

Pokrętło na stanowisku służy do wyboru rodzaju regulacji.

Obróć pokrętło \rightarrow strzałka przesuwa się w górę lub w dół o jedną linię.

• Naciśnij pokrętło \rightarrow wybór zostanie potwierdzony, w rezultacie pojawia się następny ekran lub można wybrać wartość numeryczną za pomocą pokrętła.

Wartość liczbową momentu obrotowego/prędkości można szybko zresetować do zera poprzez dwukrotne naciśnięcie pokrętła.

Rys. 2.3 Przegląd komunikatów pojawiających się na stanowisku badawczym

Rozpoczęcie pomiaru kontroli momentu obrotowego:

- 1. Ustaw strzałkę na linii "Torque Con", obracając pokrętło, a następnie naciśnij pokrętło, aby potwierdzić wybór.
- 2. Naciśnij pokrętło, po czym odpowiednie pole pojawi się jako odwrotne wskazanie, za pomocą pokrętła wybierz wartość 0,8 Nm, silnik testowy jest teraz wprawiany w ruch, a jego prędkość jest stale wskazywana na wyświetlaczu pod linią "Prędkość".

Zatrzymanie pomiaru:

- 1. Za pomocą pokrętła przesunąć strzałkę na wyświetlaczu na wiersz "Wyjście".
- 2. Naciśnij pokrętło, pojawia się okno nr 1 i pomiar zostaje zatrzymany.

Rozpoczęcie pomiaru kontroli prędkości:

Pomiar przy określonej prędkości obrotowej rozpoczyna się według tej samej podstawowej procedury, co przy pomiarze kontroli momentu obrotowego, przed rozpoczęciem regulacji silnik musi być zatrzymany. Wybierz wiersz "Speed Con" w oknie nr 1, a następnie w wierszu "Speed:" wprowadź żądaną prędkość w obr./min.

Zatrzymanie pomiaru:

- 1. Za pomocą pokrętła przesunąć strzałkę na wyświetlaczu na wiersz "Wyjście".
- 2. Naciśnij pokrętło, pojawia się okno nr 1 i pomiar zostaje zatrzymany.

Uruchamianie trybu pracy z komputera PC:

Okno nr 4 "Tryb PC / sterownik / **nieaktywne**" pojawia się w następującym przypadku: podłączony komputer PC próbuje przejąć kontrolę nad stanowiskiem badawczym silnika za pomocą oprogramowania DriveLab. Należy potwierdzić sterowanie nad stanowiskiem badawczym silnika z komputera PC naciskając pokrętło. Pojawia się okno numer 5 " Tryb PC / kontroler / **aktywny**".

Wychodzenie z trybu pracy z komputera PC:

Dezaktywuj tryb pracy z komputera przez naciśnięcie pokrętła.

Chociaż stanowisko testowe nie umożliwia już sterowania za pośrednictwem komputera PC, nie umożliwia to jeszcze sterowania ręcznego. Następnym krokiem jest przejście do sterowania ręcznego na stanowisku badawczym. W tym celu zmieniamy z "PC Mode" na "Hardware Mode" w oprogramowaniu DriveLab. Na stanowisku testowym silników pojawia się okienko nr 1, potwierdzające wykonanie tego kroku.

3. Charakterystyka silnika trójfazowego

Laboratoryjny silnik trójfazowy na stanowisku testowym przedstawia Rys. 3.1.

Rys. 3.1 Stanowisko badawcze ze silnikiem elektrycznym trójfazowym - 571874

Komponenty	Symbol graficzny
Trójfazowy silnik asynchroniczny z wirnikiem klatkowym (zwarty wirnik)	M 3~
Trójfazowy silnik asynchroniczny z wirnikiem pierścieniowym	M 3~
Maszyna synchroniczna 3-fazowa	$MS \\ 3 \sim$

Tabela 3.1 Symbole graficzne silników elektrycznych prądu zmiennego trójfazowego

Silnik trójfazowy asynchroniczny Y/
 400/230 - numer referencyjny 571874

Rys. 3.2 Uzwojenia silnika trójfazowego - tabliczka podłączeniowa

Parametry	Wartość
Moc znamionowa	0,25 kW
Prędkość obrotowa	1350 obr/min
Współczynnik mocy cosφ	0,79
Obwód gwiazdy	400 V/0,76 A
Obwód delty	230 V/1,32 A

Silnik trójfazowy asynchroniczny Y/ Δ 690/400 - numer referencyjny 571875

Rys. 3.3 Uzwojenia silnika trójfazowego – tabliczka podłączeniowa

Tabela 3.3 Parametry silnika trójfazowego

Parametry	Wartość
Moc znamionowa	0,25 kW
Prędkość obrotowa	1350 obr/min
Współczynnik mocy cosφ	0,78
Obwód gwiazdy	690 V/0,45 A
Obwód delty	400 V/0,77 A

Maszyna synchroniczna trójfazowa - numer referencyjny 572092

Rys. 3.4 Uzwojenia maszyny synchronicznej - tabliczka podłączeniowa

Parametry	Wartość
Moc znamionowa	0,3 kW
Prędkość obrotowa	1500 obr/min
Współczynnik mocy cosφ	0,97
Wzbudnica	150 V/0,95 A
Obwód gwiazdy	400 V/0,66 A
Obwód delty	230 V/1,14 A

Tabela 3.3 Parametry maszyny synchronicznej trójfazowej

Uzwojenie stojana silnika jest uzwojeniem trójfazowym, które wytwarza pole wirujące. Początki i końce faz są podłączone do zacisków na płytce zaciskowej silnika, za pomocą czego fazy można połączyć w gwiazdę lub trójkąt. Połączenie końców uzwojeń trójfazowych powoduje połączenie w gwiazdę. Połączenie końca każdej fazy z początkiem następnej skutkuje połączeniem w trójkąt, Rys. 3.5.

Rys. 3.5 Uzwojenia silnika: połączenie w gwiazdę, połączenie w trójkąt

Rys. 3.6 Położenie zworek na płytce zaciskowej silnika dla połączenia w gwiazdę i trójkąt

	Połączenie w gwiazdę	Połączenie w deltę	
Symbol	Y	Δ	
Napięcie fazowe	$U_{ph} = \frac{\sqrt{3}}{3} \cdot U$	$U_{ph} = U$	
Prąd fazowy	$I_{ph} = I$	$I_{ph} = \frac{\sqrt{3}}{3} \cdot I$	
Moc pozorna dla jednej fazy	$S_{ph} = \frac{\sqrt{3}}{3} \cdot U \cdot I$	$S_{ph} = \frac{\sqrt{3}}{3} \cdot U \cdot I$	
Całkowita moc pozorna	$S = \sqrt{3} \cdot U \cdot I$	$S = \sqrt{3} \cdot U \cdot I$	
Moc wejściowa	$P_Y = \sqrt{3} \cdot U \cdot I \cdot \cos\varphi$	$P_{\Delta} = 3 \cdot P_{Y}$	

Tabela 3.4 Parametry sieci

3.1 Zasada działania silnika trójfazowego

Prąd przepływający przez uzwojenie znajdujące się w stojanie silnika trójfazowego generuje pole wirujące. Prędkość obrotową pola wirującego można wyznaczyć ze wzoru: $n = \frac{f \cdot 60}{p}$, gdzie *n* prędkość w [obr/min], f - częstotliwość w [Hz] i p = liczba par biegunów. Najwyższa możliwa prędkość pola przy układzie 50Hz wynosi 3000 obr/min.

Synchroniczne prędkości obrotowe dla wspólnej liczby biegunów przy częstotliwości 50 Hz							
Liczba biegunów 2 4 6 8 10 12							
Liczba par biegunów	1	2	3	4	5	6	
Prędkość [obr/min]	3000	1500	1000	750	600	500	

Tabela 3.5 Predkość obrotowa silnika trójfazoweg a liczba par biegunów

Pręty przewodzące wirnika klatkowego, które początkowo znajdują się w stanie spoczynku, poddawane są zmiennemu strumieniowi magnetycznemu pola wirującego stojana, które indukuje napiecie wzbudne w prętach przewodzacych wirnika. Napiecie to powoduje przepływ prądu w zwartym uzwojeniu wirnika.

Zwarte uzwojenie, przez które przepływa teraz prad, zostaje odchylone z położenia neutralnego i wirnik zaczyna się obracać. Wirnik "podąża" za polem wirującym, które obraca się ze stałą prędkością. Kierunek obrotu wirnika pokrywa się z kierunkiem pola. Im prędkość wirnika zbliża się do prędkości pola wirującego, tym mniejsza staje się zmiana pola. Napięcie indukowane w wirniku oraz prąd staje się mniejsze.

Predkość wirnika nigdy nie dorównuje predkości synchronicznego pola wirującego. Różnica między prędkościa wirnika a prędkościa pola wirującego nazywana jest poślizgiem. Silnik pracuje jako silnik asynchroniczny. Poślizg jest zwykle wyrażany jako procent prędkości pola obrotowego. Poślizg wynosi od 1% do 8%, gdy silniki pracują przy obciążeniu znamionowym. Silniki o większej mocy mają mniejsze wartości poślizgu.

Największy prąd płynie w momencie załączenia silnika, czyli gdy wirnik jest jeszcze

zatrzymany. W zależności od konstrukcji wirnika, ten prąd rozruchowy wynosi od 4 do 8 razy więcej niż prąd znamionowy, gdy silnik pracuje przy pełnym napięciu sieciowym.

Ekstremalne obciążenie sieci zasilającej może skutkować zakłócającym spadkiem napięcia. Z tego powodu ograniczniki prądu rozruchowego są przeznaczone dla dużych silników podłączonych do publicznych sieci zasilających. Układ gwiazda-trójkąt (przełącznik lub stycznik) i przetwornica częstotliwości są najczęściej stosowane do ograniczania prądu rozruchowego w publicznych sieciach elektroenergetycznych.

3.2 Zmiana kierunku pracy silnika trójfazowego

Kierunek obrotu silnika trójfazowego można zmienić poprzez przełożenie dwóch przewodów fazowych do uzwojeń. Nie ma znaczenia, które przewody fazowe są przełożone.

Prędkość silnika trójfazowego można zmienić poprzez zmianę liczby par biegunów. Jednakże prędkość można zmieniać w ten sposób jedynie stopniowo, Tabela 3.5. Innym sposobem zmiany prędkości jest zmiana częstotliwości. Częstotliwość można regulować bezstopniowo za pomocą przetwornicy częstotliwości - falownika.

Napięcie fazowe silnika jest ważne w zależności od tego, czy stosowane jest połączenie w gwiazdę, czy w trójkąt. Jeśli podane jest napięcie fazowe 400 V, każde uzwojenie musi być zasilane napięciem 400 V. Ma to miejsce wtedy, gdy silnik jest skonfigurowany w połączenie w trójkąt. W przypadku połączenia w trójkąt napięcie fazowe jest równe napięciu zasilania.

Jeśli podane jest napięcie fazowe 230 V, każde uzwojenie musi być zasilane napięciem 230 V. Ma to miejsce w przypadku, gdy silnik jest połączony w gwiazdę. W przypadku połączenia w gwiazdę napięcie fazowe jest o $\sqrt{3}$ mniejsze od napięcia zasilania.

4. Zakładanie projektu w programie DriveLab

Załączamy na komputerze program DriveLab, wybieramy z Menu kartę Project i opcję New lub Open, Rys. 4.1 Wczytanie lub otworzenie nowego projektuRys. 4.1

	(Untitled	- DriveLab	
•							
<u>N</u> ew	Recently used documents 1 sample.dlx	point cteristic curve	Smooth curves	Start measurement Mea	Properties	Connect Inertial load mass ▼ Load simulation	
Save		50 3] 50					
Print						New diag	ram

Rys. 4.1 Wczytanie lub otworzenie nowego projektu

Następnie wybieramy silnik do testów z biblioteki, Rys. 4.2. Silnik zapisany w bibliotece ma wpisane parametry, których program nie będzie przekraczał. Zapewnia to bezpieczeństwo pracy silnika.

Rys. 4.2 Wybranie parametrów silnika do testowania w układzie gwiazda

Mamy do wyboru dwa silniki trójfazowe 571874 Y/ Δ 400/230 oraz 571875 Y/ Δ 690/400 tej samej mocy 0.25kW. Według tabliczki znamionowej pierwszy silnik na połączeniu gwiazda Y wymaga napięcia 400V, które jest dostępne w sieci. Na połączeniu gwiazda Y i 400V daje moc znamionową 0.25kW i ma załączanie jednostopniowe. Załączenie Δ na sieci krajowej doprowadzi do spalenia uzwojeń. Drugi silnik na połączeniu delta Δ wymaga napięcia 400V, które jest dostępne w sieci. Tylko na połączeniu delta Δ daje moc znamionową 0.25kW i ma załączanie dwustopniowe Y/ Δ . Załączenie

gwiazda Y jest możliwe i bezpieczne, ale obniża moc silnika trzy razy. Stosuje się do ograniczenia prądu rozruchu.

Rys. 4.3 Łączenie aplikacji ze stanowiskiem testowym

Połączenie potwierdzamy na stanowisku badawczym, jeżeli jest brak wiadomości na

stanowisku badawczym, należy dodatkowo kliknąć ikonę measurement lub load i potwierdzić wiadomość, przejść do stanowiska badawczego i potwierdzić co powinno zakończyć proces połączenia.

3	4	5
Sterowanie momentem	Tryb sterowania	Tryb sterowania
obrotowym	z komputera	z komputera
Sterowanie prędkością		
Obrotową	Nieaktywny	> Aktywny
> Komputer PC		
-		

Podłączony komputer PC próbuje przejąć kontrolę nad stanowiskiem badawczym silnika za pomocą oprogramowania DriveLab. Należy potwierdzić sterowanie na stanowisku badawczym silnika z komputera PC naciskając pokrętło. Po poprawnym zakończeniu logowania musi pojawić się okno numer 5 Tryb PC / **aktywny**.

Program jest przygotowany do rejestracji danych rzeczywistych z badanego silnika. Następnie

📥 New 🔹
🛃 Rename
💓 Delete

przechodzimy do wyboru charakterystyki za pomocą ikony ^{KDelete} ' New' lub prawym przyciskiem myszy, Rys. 4.4.

Start page	₹			Untitled - DriveLab
Disconnect om test ben Project	Customise scale Customise scale Export → Customise scale Quadrants Customise scale Customise scale Cu	vey W measuring point W load characteristic curve iagram	ooth curves	perties tor library Switch ff load Load simulation
Project Experiment series Motor 1 New diagram Rena	O Hardware O Speed Torque Torque Torque-speed characteristics	Friction % Macs.inertia [%] aracteristic aracteristic		
Dele Prop	e Time characteris	ic		New d
Cust	mise line styles			

Rys. 4.4 Wybór charakterystyki do rejestracji

Mamy do wyboru następujące charakterystyki:

- statyczna momentowa,
- statyczna prędkościowa,
- dynamiczna.

Przykładowo wybieramy charakterystykę prędkościową i ustalamy parametry rejestracji, Rys. 4.5. Prawym przyciskiem myszy lub w menu wybieramy własności i ustalamy parametry rejestracji.

	-			Untit	iled - DriveLab
Start page S	ttings				
Disconnect Distonnect Distopriet	Configure axes University Survey	easuring point ad characteristic curve m	Start measurement	Switch ff load mass •	
Project					
Experiment series Motor 1 New diagram New diagram New diagram	O Hardware O Speed O Torque O Load simulation	Friction % [74.68] Mass inertia [%] 14.41			
Speed	New				New dia
L.	Properties				

Rys. 4.5 Wybór parametrów charakterystyki

Należy określić przykładowo zakres pomiaru wielkości mierzonych np. od prędkości bieżącej do 100obr/min, Rys. 4.6. Wybraliśmy silnik trójfazowy i mniejsze prędkości przeciążają silnik, ale na czas pomiaru jest to dopuszczalne i bezpieczne.

Rys. 4.6 Parametry wybranej charakterystyki

W następnej kolejności klikamy ikonę ^L ^{Configure axes...} i konfigurujemy parametry wykresu, układ współrzędnych oraz zakres skali, Rys. 4.7.

Measured variable	Х	Y	from	to		ОК
Speed	۲		0.00	1400.00	rpm	
Torque	0	✓	0.00	1.00	Nm	Cance
Mech. power	0	✓	0.00	400.00	w	
Effective power	0		0.00	1200.00	w	
Apparent power	0		0.00	1500.00	VA	
Reactive power	0		0.00	1000.00	Var	
Efficiency	0		0.00	100.00	%	
Slip	0		0.00	100.00	%	
Power factor	0		0.00	1.00	-	
Time	0		0.00	30.00	s	
Voltage	0		0.00	500.00	v	
Current	0		0.00	2.50	Α	

Rys. 4.7 Konfiguracja wykresu

Parametry zakresu charakterystyk są oszacowane przez program według mocy wybranego silnika. Zwiększanie zakresu nie jest wskazane. Zmniejszenie zakresu może być wprowadzone według operatora bez konsekwencji dla silnika, dotyczą tylko wykresu. Ważne są także parametry maksymalne hamowni.

Ostatecznie jesteśmy przygotowani i załączamy rejestrację ikoną measurement. Zarejestrowana charakterystyka prędkościowa została przedstawiona na Rys. 4.8Y i Rys. 4.9Δ.

Rys. 4.8 Charakterystyka prędkościowa silnika elektrycznego trójfazowego gwiazda Y

Rys. 4.9 Charakterystyka prędkościowa silnika elektrycznego trójfazowego delta Δ

Zarejestrowana charakterystyka momentowa została przedstawiona na Rys. 4.10Y i Rys. 4.11Δ.

Rys. 4.10 Charakterystyka momentowa silnika elektrycznego trójfazowego gwiazda Y

Rys. 4.11 Charakterystyka momentowa silnika elektrycznego trójfazowego delta Δ

Po rejestracji wykres można modyfikować i dodawać kolejne parametry. Ustawienie linii pionowej pokazuje odczyt dokładnych parametrów silnika dla danej współrzędnej.

Przebieg charakterystyk jest podobny i nie zależy od wyboru podłączenia Y/Δ . Wybór połączenia ma wpływ dostępną moc według tabliczki znamionowej oraz rozruch silnika i ograniczenie prądu rozruchu.

 $Charakterystyki dynamiczne przedstawiają zmianę parametrów w czasie. Rys. 4.12 przedstawia charakterystykę czasową rozruchu i zatrzymania silnika bez obciążenia zewnętrznego Y/\Delta.$

Program daje możliwość symulacji obciążenia silnika według wybranych charakterystyk maszyn. W kolejnych próbach możemy załączyć symulowane obciążenie. Dostępne maszyny obciążające zostały zawarte w Tabela 4.1 Charakterystyki maszyn do obciążenia silnika elektrycznego.

Symbol	Charakterystyczna krzywa obciążenia	Opis
	ML	Masa inercyjna Charakterystykę obciążenia określa się wyłącznie na podstawie bezwładności i tarcia. Moment obrotowy jest stały w całym zakresie prędkości.
8	ML	Kalander - calenderW przypadku kalandra występujerównież moment obrotowy, który jestproporcjonalny do prędkości.Kalander to seria twardych rolek dociskowychużywanych do wykańczania lub wygładzaniaarkusza materiału, takiego jak papier,tekstylia, guma lub tworzywa sztuczne. Walcekalandrujące wykorzystuje się także doformowania niektórych typów folii z tworzywsztucznych orazdonakładaniapowłok. Niektórewalcekalandrasąpodgrzewane lub chłodzone w razie potrzeby.

Tabela 4.1 Charakterystyki maszyn do obciążenia silnika elektrycznego

ML	Pompa/wentylator W przypadku pomp i wentylatorów moment obrotowy jest proporcjonalny do kwadratu prędkości.
ML	TokarkaAby uzyskać stałą siłę skrawania iprędkość skrawania, wymagana jest stała moc wcałym zakresie prędkości tokarki. W rezultaciemoment obrotowy jest odwrotnie proporcjonalnydo prędkości.Zaleca się podłączenie obciążenia pouruchomieniu silnika, gdyż w trakcie rozruchu niejest dostępna wystarczająca moc.
ML	Dźwig Charakterystyka obciążenia zależy od ciężaru, który ma zostać podniesiony. Podobnie jak w przypadku masy bezwładnościowej, skutkuje to stałym momentem obrotowym. Symulowany jest dźwig bez hamulca, co oznacza, że ładunek opada po wyłączeniu silnika.
 ML	Napęd przejazdowy Symulowany jest napęd postępowy, który przebiega przez 5 segmentów ścieżki przez 5 sekund każdy. 1. Płaski odcinek 2. Segment nachylony ku górze 3. Płaski odcinek 4. Segment o nachyleniu w dół 5. Płaski odcinek
ML	Wciągarka Symulowane jest nawijanie materiału na wałek. Moment obrotowy wzrasta wraz ze średnicą materiału nawiniętego na wałek. Średnicę początkową ustawia się za pomocą obciążenia stałego, a zwiększenie średnicy za pomocą opcji obciążenia dynamicznego.

W kolejnych próbach możemy załączyć symulowane obciążenie, Rys. 4.13.

DriveLab											
nfigure axes	Survey	Smooth curves		Properties							
stomise scale Quadrants	Show measuring point		Start	🍕 Motor library	Connect	Inortial					
ort • Quadrants	Show load characteristic curve		measurement		load	mass 🔻					
	Diagram		Measu	rement	Load sim	Pred	efined load machines			^	
O Hardware	Empty					•	Inertial mass	\bigotimes	Fan\ pump		F
O Speed O Torque	Empty						Lift\ crane		Calandar		
 Load simulation 							Winder drive	Þ	Lathe		F
				s	peed-to	<u> </u>	Traction drive			~	
E E						C Tr	ansfer from selected measurer	ment		.:	Γ
											8

Rys. 4.13 Wybór obciążenia

Obciążenie załączamy ikoną i wykonujemy test pracy z rozruchem silnia lub tylko na pracującym silnikiem. Obciążenie można załączyć w każdej chwili testu. Symulacja rozruchu silnika i zatrzymania z odbiornikiem inercyjnym przedstawia Rys. 4.14 Y i Rys. 4.15 Δ .

Rys. 4.14 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem inercyjnym, połączenie Y

Rys. 4.15 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem inercyjnym, połączenie Δ

Symulacja rozruchu silnika i zatrzymania z odbiornikiem wirowym pompa/wentylator przedstawia Rys. 4.16 Y i Rys. 4.17 Δ .

Rys. 4.16 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem wirowym pompa/wentylator, połączenie Y

Rys. 4.17 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem wirowym pompa/wentylator, połączenie Δ

Symulacja rozruchu silnika i zatrzymania z odbiornikiem wirowym pompa/wentylator przedstawia Rys. 4.18 Y i Rys. 4.19 $\Delta.$

Rys. 4.18 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem kalandra, połączenie Y

Rys. 4.19 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem kalandra, połączenie Δ

Symulacja rozruchu silnika i zatrzymania z odbiornikiem wciągarką przedstawia Rys. 4.20 Y i Rys. 4.21 $\Delta.$

Rys. 4.20 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem wciągarką, połączenie Y

Rys. 4.21 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem wciągarką, połączenie Δ

Symulacja rozruchu silnika i zatrzymania z odbiornikiem tokarką przedstawia Rys. 4.22 Y i Rys. 4.23 $\Delta.$

Rys. 4.22 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem tokarką, połączenie Y

Rys. 4.23 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem tokarką, połączenie Δ

Symulacja rozruchu silnika i zatrzymania z odbiornikiem trakcyjnym przedstawia Rys. 4.24 Y i Rys. 4.25 Δ

Rys. 4.24 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem trakcyjnym, połączenie Y

Rys. 4.25 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem trakcyjnym, połączenie Δ

Symulacja rozruchu silnika i zatrzymania z odbiornikiem dźwigowym przedstawia Rys. 4.26 Y.

Rys. 4.26 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem dźwigowym, połączenie Y

5. Przebieg ćwiczenia

- a) Połączyć przewody zasilające i sterujące na stanowisku badawczym,
- b) Połączyć przewody zasilające i sterujące do silnika elektrycznego,
- c) Załączyć program DriveLab, skonfigurować i połączyć ze stanowiskiem,
- d) Wykonać charakterystykę prędkościową silnika elektrycznego, zarejestrować i wydrukować,
- e) Wykonać charakterystykę momentową silnika elektrycznego, zarejestrować i wydrukować,
- f) Wykonać charakterystyki dynamiczne dla wybranych obciążeń silnika elektrycznego, zarejestrować i wydrukować,
- g) Wykonać sprawozdanie i wnioskami.

Spis ilustracji

Rys.	1.1	Elementy stanowiska dydaktycznego – układ napędowy	4
Rys.	1.2	Podłączenie silnika prądu przemiennego trójfazowy, podłączenie termoprzełącznika	6
Rys.	2.1	Stanowisko testowe	7
Rys.	2.2	Montaż silnika elektrycznego na stanowisku testowym	8
Rys.	2.3	Przegląd komunikatów pojawiających się na stanowisku badawczym	9
Rys.	3.1	Stanowisko badawcze ze silnikiem elektrycznym trójfazowym - 571874	.11
Rys.	3.2	Uzwojenia silnika trójfazowego – tabliczka podłączeniowa	.12
Rys.	3.3	Uzwojenia silnika trójfazowego – tabliczka podłączeniowa	.12
Rys.	3.4	Uzwojenia maszyny synchronicznej – tabliczka podłączeniowa	.13
Rys	3.5	Uzwojenia silnika: połączenie w gwiazdę, połączenie w trójkąt	.13
Rys	3.6	Położenie zworek na płytce zaciskowej silnika dla połączenia w gwiazdę i trójkąt	.13
Rys	4.1	Wczytanie lub otworzenie nowego projektu	.16
, Rys.	4.2	Wybranie parametrów silnika do testowania w układzie gwiazda	.16
Rys	4.3	Łączenie aplikacji ze stanowiskiem testowym	.17
, Rvs.	4.4	Wybór charakterystyki do rejestracji	.18
, Rvs.	4.5	Wybór parametrów charakterystyki	.18
, Rvs.	4.6	Parametry wybranej charakterystyki	.19
, Rvs.	4.7	Konfiguracia wykresu	.19
Rvs.	4.8	Charakterystyka predkościowa silnika elektrycznego trójfazowego gwiazda Y	.20
, Rvs.	4.9	Charakterystyka predkościowa silnika elektrycznego trójfazowego delta Δ	.20
Rvs.	4.10) Charakterystyka momentowa silnika elektrycznego trójfazowego gwiazda Y	.21
Rvs.	4.11	Charakterystyka momentowa silnika elektrycznego trójfazowego delta Δ	.21
Rvs.	4.12	2 Charakterystyka dynamiczna rozruchu i zatrzymania silnika tróifazowego na biegu jałowy	m
,		Υ/Δ	.22
Rvs.	4.13	y B Wybór obciażenia	.23
, Rys.	4.14	ł Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem	
•		inercyjnym, połączenie Y	.24
Rys.	4.15	5 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem	
		inercyjnym, połączenie Δ	.24
Rys.	4.16	6 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem	
•		wirowym pompa/wentylator, połączenie Y	.25
Rys.	4.17	7 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem	
•		wirowym pompa/wentylator, połączenie Δ	.25
Rys.	4.18	3 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem	
•		kalandra, połączenie Y	.26
Rys.	4.19	Ocharakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem	
		kalandra, połączenie Δ	.26
Rys.	4.20) Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem	
		wciągarką, połączenie Y	.27
Rys.	4.21	L Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem	
•		wciągarką, połączenie Δ	.27
Rys.	4.22	2 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem	
-		tokarką, połączenie Y	.28
Rys.	4.23	B Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem	
•		tokarką, połączenie Δ	.28
Rys.	4.24	ł Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem	
•		trakcyjnym, połączenie Y	.29
Rys.	4.25	S Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem	
•		trakcyjnym, połączenie Δ	.29
Rys.	4.26	6 Charakterystyka dynamiczna rozruchu i zatrzymania silnika trójfazowego z obciążeniem	
		dźwigowym. połaczenie Y	.30